LIBRARY ADDITION FOR
LANIER ELEMENTARY
1727 S HARVARD AVE, TULSA, OK 74112
TULSA PUBLIC SCHOOLS

ARCHITECT: CJC ARCHITECTS, INC.
CONSULTING ENGINEER: ALLIED ENGINEERING GROUP, LLC
STRUCTURAL ENGINEER: 360 ENGINEERING GROUP, PLLC
CIVIL ENGINEER: KKT ARCHITECTS, INC.
LIBRARY ADDITION
FOR LANIER
ELEMENTARY
1727 S HARVARD AVE
TULSA, OK 74112
City of Tulsa, Tulsa County, Oklahoma

Topographic Survey
Lanier Elementary School
W/3, NW/4, SW/4, SW/4
Section 9, T-19-N, R-13-E

Surveyor's Certification

NOT TO SCALE
- FOR REFERENCE ONLY
Erosion Control Notes:

1. All grading and erosion control shall be constructed in accordance with the current City standard construction specifications.
2. All erosion control construction shall be inspected by the Public Works Department utility inspection in accordance with City policy.
3. Erosion control shall start with initial construction and be practiced throughout the project.
4. All fences shall be constructed adjacent to all erosion-ways, and, in all areas that will bridge into the stormwater system.
5. Where construction activity temporarily causes for 10 days, the disturbed areas shall be stabilized with seed and mulch. The seed mix shall match the mix specified on the landscape plans.
6. The contractor shall ensure all areas continue during construction, necessary material, such as mulch or seed, is uniformly spread at a thickness of one to two inches.
7. There are no offshore material, pipes, Benches, or equipment storage areas.

Erosion Control Legend:

- EAST FENCE (1/16")
- EAST PROTECTION (1/16")

Legend:

- DISTURBED CONSTRUCTION MATERIAL (1/16")
- SEDIMENT CONTROL MATERIAL (1/16")
- EROSION SLOPES
- SILT FENCE
- POLYVINYL CHLORIDE PIPE (PVC)
- POWER POLE (UC)
- POWER POLE WITH DIP (UC)
- RESTRICTED WATERLINE EASEMENT (OE)
- SANITARY SEWER PIPE (SP)
- SANITARY SEWER MANHOLE (SM)
- UNDERGROUND ELECTRIC (U/E)
- UNDERGROUND TELEPHONE (U/T)
- IRRIGATION (IR)
- ROOF DRAIN (RD)
- TOP OF WALL
- TOP OF SIDEWALK
- TOP OF GUTTER
- FLOWLINE (INVERT)
- ELECTRIC PEDESTAL (UT)
- CONCRETE (CO)
- ELECTRIC POLE (PE)
- OVERHEAD ELECTRIC (OE)
- FLATWORK CONSTRUCTION
- BASECOURSE
- WALK
- CURB
- STREET ROW TO BE PRICED AS AN ALTERNATE
- CATCH BASIN
- MULCH
- AND SHALL BE Established
- DRIVES AND DRAINAGE-WAYS, TO BE
- CONSTRUCTION EMPTIES
- DRAINAGE
- CONSTRUCTION IS COMPLETE
- VACUUMING OF CONSTRUCTION EMPTIES & Explode AFTER
All Storm Sewer Systems shall be constructed in accordance with the current City Standard Construction Specifications.

The Contractor shall verify utility locations before excavation.

The Contractor shall notify the City Engineering and Construction Department at least 24 hours prior to start of construction.

Equipment and appurtenant devices shall be approved by the City Engineer before construction is started.

All storm sewer main pipe shall be reinforced concrete pipe (RCP) and/or equivalent, corrugated smooth interior plastic pipe.

Not used.

If reinforced concrete pipe (RCP) is used, it shall conform to ASTM C662. Whenever other than RCP is used, joints shall be grooved and be同一个.

Storm sewer bedding, backfill, and compaction shall be in accordance with City Standards.

All storm sewer lines not under public ways shall be laid in 10" aggregate bedding to a minimum depth of 12" inches above the top of the pipe or 18" above the top of manhole toes, whichever is greater. Upon completion of backfilling, such bedding shall be compacted in accordance with City Standards.

Storm sewer lines located under paved streets shall be laid in Type "A" aggregate bedding and the trench completely filled to included with Type "A" aggregate compacted to 95% by standard Proctor density. Pipe backfill shall be placed in lifts not exceeding eight (8) inches and compacted by vibratory plate or other methods approved by the Engineer.

Pipe support shall be required to prevent grades of 0.1% to 0.15% and density after pipe is backfilled.

All storm sewer lines shall be properly aligned and placed prior to backfilling. Prior to backfilling, elevations shown on plans may be adjusted shall the survey be completed to conform to final placing prior to field inspection by City Engineers.

The Contractor shall notify the City Engineer in writing at least 24 hours prior to starting any work on the project.

The utility Contractor shall assume the risk of damages to existing concrete appurtenances prior to final Staking and review of field conditions by the time of construction.

The Contractor shall properly align and backfill as outlined on all disturbed areas as soon as the work is completed.

General Construction Notes:

1. All storm sewer is RCP pipe unless otherwise noted herein.

2. Storm and sanitary sewer shall be designed and installed in accordance with the City Standard Construction Specifications.

3. All storm sewer lines shall be properly aligned and placed prior to backfilling. Prior to backfilling, elevations shown on plans may be adjusted shall the survey be completed to conform to final place prior to field inspection by City Engineers.

4. The Contractor shall notify the City Engineer in writing at least 24 hours prior to starting any work on the project.

5. The utility Contractor shall assume the risk of damages to existing concrete appurtenances prior to final Staking and review of field conditions at the time of construction.

6. The Contractor shall properly align and backfill as outlined on all disturbed areas as soon as the work is completed.

NOTE: All storm sewer is RCP pipe unless otherwise noted herein.
SUNRISE TERRACE
OR FLY ASH TREAT AND STABILIZE, AND THEN FINAL FINE GRADING.

INCH LIFT OF MATERIAL.
OF PAVEMENT.
DEVELOPER PRIOR TO INSTALLATION OR INCORPORATION OF MATERIAL IN THE WORK.
200 TONS OR DAILY WHICHEVER IS LESS.
SUBGRADE

ONE (1) OF EACH TESTS CONDUCTED FOR EVERY 100 CUBIC YARDS PLACED.
SUBSURFACE GEOTECHNICAL REPORT.
ELEVATION = 812.75 (NAVD88)

WMH
WM
UT
UNDERGROUND ELECTRIC
TYPICAL
TOP OF WALL
TOP OF PAVING
STORM SEWER
ROOF DRAIN

IR
IPF
IRON PIN
GUY
GAS LINE
FIRE PROTECTION
FLOWLINE (INVERT)
CUBIC YARD
CORNER
CONC

4
12.3

2.1

4.1

5.2

6.3

7.3

8.3
A Concrete Sidewalk Detail

B Sidewalk Joint Details

C ADA Access Ramp

D HC Parking Sign Detail

E Not Used

F Construction Entrance Detail

G Silt Fence Detail
GENERAL NOTES
MANUFACTURED OR TERMINATES APPROVED AND LISTED ON THE
DEPARTMENT'S DIVISION CONTROL PRODUCT ACCEPTABILITY LIST MAY BE
REPLACED WITH EQUIVALENT MATERIAL.
WHEN MAINTAINING INLET PROTECTION CARE SHALL BE TAKEN TO
ENSURE THE SHIELD PLATES OR THE INLET FABRIC IS NOT
CORRODED OR FUNNED.
INLET FABRIC IS TO BE INSTALLED AT 90 DEGREES TO THE
CURB SURFACE OR AT 90 DEGREES TO THE GRADE.

INLET PROTECTION, TYPE A

INLET PROTECTION, TYPE B
(WITHOUT CURB BOX)

INLET PROTECTION, TYPE C
(WITH CURB BOX)

INLET PROTECTION, TYPE D
(CAN BE INSTALLED IN ANY INLET TYPE WITH
OR WITHOUT CURB BOX)

INSTALLATION NOTES
TYPE B & C
TIME CHARGE PAYS IN THE FLOOR LINE TO WITHIN 2" OF THE GRADE.
THE CONTRACTOR SHALL ACHIEVE PERMANENT, USING A BONDED FLAP,
AND INSTALL IN SUCH A MANUFACTURER OR TERMINATES APPROVED AND LISTED ON
THE DEPARTMENT'S DIVISION CONTROL PRODUCT ACCEPTABILITY LIST MAY BE
REPLACED WITH EQUIVALENT MATERIAL.
WHEN MAINTAINING INLET PROTECTION CARE SHALL BE TAKEN TO
ENSURE THE SHIELD PLATES OR THE INLET FABRIC IS NOT
CORRODED OR FUNNED.
INLET FABRIC IS TO BE INSTALLED AT 90 DEGREES TO THE
CURB SURFACE OR AT 90 DEGREES TO THE GRADE.

INLET PROTECTION, TYPE A

INLET PROTECTION, TYPE B
(WITHOUT CURB BOX)

INLET PROTECTION, TYPE C
(WITH CURB BOX)

INLET PROTECTION, TYPE D
(CAN BE INSTALLED IN ANY INLET TYPE WITH
OR WITHOUT CURB BOX)

GENERAL NOTES
MANUFACTURED OR TERMINATES APPROVED AND LISTED ON THE
DEPARTMENT'S DIVISION CONTROL PRODUCT ACCEPTABILITY LIST MAY BE
REPLACED WITH EQUIVALENT MATERIAL.
WHEN MAINTAINING INLET PROTECTION CARE SHALL BE TAKEN TO
ENSURE THE SHIELD PLATES OR THE INLET FABRIC IS NOT
CORRODED OR FUNNED.
INLET FABRIC IS TO BE INSTALLED AT 90 DEGREES TO THE
CURB SURFACE OR AT 90 DEGREES TO THE GRADE.

INLET PROTECTION, TYPE A

INLET PROTECTION, TYPE B
(WITHOUT CURB BOX)

INLET PROTECTION, TYPE C
(WITH CURB BOX)

INLET PROTECTION, TYPE D
(CAN BE INSTALLED IN ANY INLET TYPE WITH
OR WITHOUT CURB BOX)
GENERAL NOTES

DESIGN PARAMETERS

1. STRUCTURAL DESIGN LOADS AND STANDARDS TO BE USED IN THE DESIGN OF THE CONSTRUCTION ARE AS FOLLOWS:

 A. SEISMIC LOADS:
 - Design earthquakes shall be based on the U.S. Geological Survey (USGS) earthquake attenuation curves for the locality of the project.
 - Seismic coefficients shall be determined based on the soil type, seismic zone, and other factors as specified by the seismologist.

 B. LOADS:
 - Live loads shall be based on the applicable codes and standards for the locality.
 - Dead loads shall be based on the applicable codes and standards for the locality.

 C. SPECTRAL RESPONSE COEFFICIENT
 - The spectral acceleration shall be determined based on the applicable codes and standards for the locality.

 D. EXPOSURE CLASSIFICATION
 - The exposure classification shall be determined based on the applicable codes and standards for the locality.

 E. L. DEFLECTION AMPLIFICATION FACTOR, C
 - The deflection amplification factor shall be determined based on the applicable codes and standards for the locality.

 F. CONCRETE
 - The concrete strength shall be determined based on the applicable codes and standards for the locality.

 G. STEEL:
 - The steel strength shall be determined based on the applicable codes and standards for the locality.

 H. DESIGN UPLIFT PRESSURE ON ROOFS (C&C LOAD BASED ON 100 SQ.FT AREA)
 - The design uplift pressure shall be determined based on the applicable codes and standards for the locality.

 I. FLOOR SPECTRAL RESPONSE ACCELERATION
 - The floor spectral response acceleration shall be determined based on the applicable codes and standards for the locality.

 J. EXTERIOR FOOTINGS FOR STAIRS AND RAMPS SHALL BEAR A MINIMUM OF 0.5x THE MINIMUM BEARING DEPTH.

DIVISION 2 - FOUNDATIONS

1. REQUIREMENTS FOR FOUNDATIONS SHALL BE IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS FOR THE LOCality.

 A. FOUNDATION WALLS
 - Foundation walls shall be designed and constructed in accordance with the applicable codes and standards for the locality.

 B. EXTERIOR EXPOSED CONCRETE (AIR ENTRAINED)
 - Exterior exposed concrete shall be designed and constructed in accordance with the applicable codes and standards for the locality.

 C. SLABS OR WALLS NOT EXPOSED TO EARTH OR WEATHER
 - Slabs or walls not exposed to earth or weather shall be designed and constructed in accordance with the applicable codes and standards for the locality.

 D. DESIGNATION OF SUPPORT POINT(S)
 - Designation of support points shall be provided in accordance with the applicable codes and standards for the locality.

DIVISION 3 - CONCRETE

1. ALL CONCRETE SHALL COMPLY WITH THE SPECIFICATIONS FOR CONCRETE, AS REQUIRED.

 A. CONCRETE PAINTS AND SURFACES SHALL BE APPLIED IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS FOR THE LOCality.

 B. EXTERIOR EXPOSED CONCRETE (AIR ENTRAINED)
 - Exterior exposed concrete shall be designed and constructed in accordance with the applicable codes and standards for the locality.

 C. COMPOSITE LIVE LOAD:
 - Composite live loads shall be determined based on the applicable codes and standards for the locality.

DIVISION 4 - MASONRY

1. CONCRETE MASONRY UNITS SHALL BE QUALITY CONTROLLED IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS FOR THE LOCality.

 A. CONCRETE MASONRY UNITS SHALL BE DESIGNATED AND MANUFACTURED IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS FOR THE LOCality.

 B. QUALITY CONTROL OF MASONRY UNITS
 - Quality control of masonry units shall be conducted in accordance with the applicable codes and standards for the locality.

 C. MASONRY JOINTS
 - Masonry joints shall be designed and constructed in accordance with the applicable codes and standards for the locality.

DIVISION 5 - COMPOSITE JOIST

1. DESIGN REQUIREMENTS

 A. CONCRETE MASONRY UNITS SHALL BE QUALITY CONTROLLED IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS FOR THE LOCality.

 B. CONCRETE MASONRY UNITS SHALL BE DESIGNATED AND MANUFACTURED IN ACCORDANCE WITH THE APPLICABLE CODES AND STANDARDS FOR THE LOCality.

 C. QUALITY CONTROL OF MASONRY UNITS
 - Quality control of masonry units shall be conducted in accordance with the applicable codes and standards for the locality.

 D. MASONRY JOINTS
 - Masonry joints shall be designed and constructed in accordance with the applicable codes and standards for the locality.

 E. FLOOR SYSTEM
 - Floor system shall be designed and constructed in accordance with the applicable codes and standards for the locality.

 F. ROOF SYSTEM
 - Roof system shall be designed and constructed in accordance with the applicable codes and standards for the locality.
GENERAL NOTES

DIVISION 5 - STRUCTURAL STEEL

-Stainless steel shall be installed with fasteners that comply with ASTM A307, Grade A or Grade B, whenever possible. When non-compliance is necessary, fasteners shall be of the Grade approved by the Architect and Structural Engineer of Record (S.E.R.).

-Steel fasteners shall be commercially available, and all fasteners shall be Type A or Type B, consistent with ASTM A307. For welding purposes, Grade 5 fasteners shall be used to secure stainless members together.

-Steel fasteners shall be Grade 5 or Grade 7, except when otherwise specified in the drawings.

-Stainless steel shall be used for all structural connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.

-Stainless steel shall be used for all connections where the use of carbon steel would lead to corrosion issues.
SPECIAL INSPECTIONS

GENERAL NOTES

SPECIAL INSPECTIONS

1. SPECIAL INSPECTIONS SHALL BE PERFORMED ON CONSTRUCTION ACTIVITIES AS INDICATED IN THE SCHEDULE AND AS NOTED ON THE BUILDING DEPARTMENT APPROVED PLANS. ADEQUATE NOTICE AND ACCESS TO APPROVED PLANS SHALL BE PROVIDED SO THAT THE SPECIAL INSPECTOR HAS TIME TO BECOME FAMILIAR WITH THE PROJECT.

2. SPECIAL INSPECTORS SHALL BE HAND-HELD DEVICES BY THE ARCHITECT IN CONFORMANCE WITH GENERAL CONTRACTORS’ CONTRACTUAL REQUIREMENTS.

3. THE SPECIAL INSPECTOR SHALL RESIDE AT THE PROJECT SITE DURING CONSTRUCTION ACTIVITIES AND BE AVAILABLE FOR IMMEDIATE ATTENTION OF THE CONTRACTOR AND ARCHITECT.

4. IN ACCORDANCE WITH THE CODES THAT FOLLOWING TYPES OF WORK REQUIRE SPECIAL INSPECTION AND TESTING:

 A. FOUNDATIONS SHALL BE INSPECTED DURING PLACEMENT.
 B. AFTER ERECTION OF STRUCTURAL STEEL AND JOISTS, AND BEFORE METAL DECK PLACEMENT.
 C. AFTER INSTALLATION OF FIRST FOUNDATION REINFORCING AND BEFORE CONCRETE PLACEMENT.
 D. AFTER ERECTION OF CONCRETE STRUCTURE AND BEFORE PLACEMENT OF TOPPING SLAB.

5. ADEQUATE NOTICE AND ACCESS TO APPROVED PLANS SHALL BE PROVIDED SO THAT THE SPECIAL INSPECTOR HAS TIME TO BECOME FAMILIAR WITH THE PROJECT.

6. THE SPECIAL INSPECTOR SHALL PERFORM SPECIAL INSPECTION AND VERIFICATION OF STEEL CONSTRUCTION PRIOR TO BOLTING.

7. SPECIAL INSPECTORS SHALL KEEP RECORDS OF INSPECTIONS. THE SPECIAL INSPECTOR SHALL FURNISH INSPECTION REPORTS TO THE BUILDING INSPECTOR.
1. RE: SHEET S001 FOR GENERAL NOTES.
2. RE: ARCHITECTURAL PLANS FOR DIMENSIONS NOT SHOWN. COORDINATE SLAB ELEVATIONS AND SLOPES WITH ARCHITECTURAL PLANS.
3. RE: MECHANICAL AND ARCHITECTURAL DRAWINGS FOR SIZES AND LOCATION OF PENETRATIONS NOT INDICATED ON STRUCTURAL DRAWINGS.
4. CONTRACTOR SHALL PROVIDE POSITIVE DRAINAGE DURING CONSTRUCTION FOR THE SLAB AREA. SLAB SUBGRADE SHALL NOT BE ALLOWED TO RETAIN WATER DURING CONSTRUCTION.
5. RE: SHEET S501 FOR REINFORCEMENT AT REENTRANT CORNERS AND DISCONTINUOUS JOINTS.
6. FINISH FLOOR REFERENCE ELEVATION = 100' - 0" (CIVIL REF = 816.09). TYPICAL FLOOR SLAB SHALL BE 4" THICK CONCRETE SLAB-ON-GRADE REINFORCED WITH #4 AT 16" OC EACH WAY OVER 15 MIL MINIMUM VAPOR BARRIER OVER 4" GRANULAR BASE COURSE OVER APPROVED LOW VOLUME CHANGE ENGINEERED FILL PER THE GEOTECHNICAL REPORT.
7. SLAB BLOCKOUTS AT COLUMNS AND BRACED FRAMES SHALL BE SIZED AS REQUIRED TO PROPERLY INSTALL AND CONNECT COLUMNS AND DIAGONAL BRACES, RE: SHEET S501.
8. CONTROL JOINTS SHOULD NOT BE SPACED MORE THAN 15' - 0" OC, AND THE PANELS SO FORMED BY THE CONTROL JOINTS SHOULD NOT EXCEED A LENGTH TO WIDTH RATIO OF 1.5.
9. THICKENED SLAB AT FLOOR BOXES AND CONDUIT TO MAINTAIN A MINIMUM 4" SLAB THICKNESS. RE: ELECTRICAL DRAWINGS FOR LOCATIONS.
10. HOUSEKEEPING PADS SHALL BE 4" N.W. CONCRETE PAD PLACED ON SLAB. REINFORCE PAD WITH #3 AT 12" OC, EW. RE: MECHANICAL DRAWINGS FOR SIZE AND LOCATION OF PADS.
1. RE: SHEET S001 FOR GENERAL NOTES.
2. RE: SHEET S521 FOR TYPICAL ROOF FRAMING DETAILS.
3. RE: ARCHITECTURAL PLANS FOR DIMENSIONS NOT SHOWN.
4. RE: MECHANICAL AND ARCHITECTURAL DRAWINGS FOR SIZES AND LOCATION OF PENETRATIONS NOT INDICATED ON STRUCTURAL DRAWINGS.
5. “JB ELEV” INDICATES JOIST BEARING ELEVATION.
6. NO HANGING LOADS SHALL BE APPLIED TO THE ROOF DECK.
7. TYPICAL ROOF SLAB SHALL BE 4" NORMAL WT CONC ON 2" X 20 GAUGE GALVANIZED COMPOSITE FLOOR DECK (TOTAL DEPTH = 6”). REINFORCE WITH #4 @ 12" OC EW PLACED 1" BELOW TOP OF SLAB.
8. STEEL JOIST MANUFACTURER SHALL COORDINATE MECHANICAL DUCT LOCATIONS TO AVOID CONFLICT WITH BRIDGING.
10. STEEL FABRICATOR SHALL DESIGN BEAM CONNECTIONS TO COLUMNS OR TO BEAMS FOR THE TOTAL REACTIONS SHOWN ON THE PLANS. REACTIONS INDICATED ARE FACTORED FOR USE WITH LRFD METHOD. IF NO REACTION IS SHOWN ON THE PLANS, DESIGN FOR THE LRFD FACTORED REACTION SHOWN IN THE STEEL BEAM MINIMUM CONNECTION SCHEDULE.
11. ADDITIONAL PLATES, INCLUDED BUT NOT LIMITED TO DOUBLER PLATES AND STIFFENER PLATES, ARE THE RESPONSIBILITY OF THE CONNECTIONS ENGINEER.
12. ROOF SHEATHING TO 48/24 SPAN RATED WOOD SHEATHING MATCHING THICKNESS OF EXISTING ROOF SHEATHING. ATTACH TO SUPPORTS WITH 10d NAILS AT 6" OC ALONG PERIMETER EDGES AND AT 12" OC ALONG INTERMEDIATE SUPPORTS. WHERE THE NEW SHEATHING MEETS THE EXISTING SHEATHING, RUN A 2X NAILER CONTINUOUS AND ATTACH BOTH THE NEW AND EXISTING SHEATHING TO THIS NAILER WITH 10d NAILS AT 6" OC.
ANCHOR ROD DETAILS

NOTES:
1. PROVIDE CORNER BARS IN ICF WALLS PER DETAIL 1001.
2. SUPPLY SHEET METAL TO MATCH FOR LANIER FOUNDATION DETAILS.

COLUMN BASE PLATE SCHEDULE

<table>
<thead>
<tr>
<th>SHEET</th>
<th>PLATE #</th>
<th>PLATE #</th>
<th>ANCHOR ROD</th>
<th>EMBEDMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

FOOTING DETAIL

NOTES:
1. INCREASE SHEET METAL TO MATCH FOR LANIER FOUNDATION DETAILS.
2. PROVIDE CORNER BARS TO MATCH FOR LANIER FOUNDATION DETAILS.

ANCHOR ROD SCHEDULE

<table>
<thead>
<tr>
<th>SHEET</th>
<th>PLATE #</th>
<th>PLATE #</th>
<th>ANCHOR ROD</th>
<th>EMBEDMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>B</td>
<td>C</td>
<td>D</td>
<td>E</td>
</tr>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
</tr>
</tbody>
</table>

TYPICAL COLUMN BLOCKOUT

NOTES:
1. INCREASE SHEET METAL TO MATCH FOR LANIER FOUNDATION DETAILS.
2. PROVIDE CORNER BARS TO MATCH FOR LANIER FOUNDATION DETAILS.

REINFORCING AT SLAB JOINT

NOTES:
1. INCREASE SHEET METAL TO MATCH FOR LANIER FOUNDATION DETAILS.
2. PROVIDE CORNER BARS TO MATCH FOR LANIER FOUNDATION DETAILS.

J OINT DETAILS

NOTES:
1. INCREASE SHEET METAL TO MATCH FOR LANIER FOUNDATION DETAILS.
2. PROVIDE CORNER BARS TO MATCH FOR LANIER FOUNDATION DETAILS.

ANCHOR ROD DETAILS

NOTES:
1. INCREASE SHEET METAL TO MATCH FOR LANIER FOUNDATION DETAILS.
2. PROVIDE CORNER BARS TO MATCH FOR LANIER FOUNDATION DETAILS.

TYP RE-ENTRANT CORNER BAR

NOTES:
1. INCREASE SHEET METAL TO MATCH FOR LANIER FOUNDATION DETAILS.
2. PROVIDE CORNER BARS TO MATCH FOR LANIER FOUNDATION DETAILS.

FOUNDATION DETAILS

NOTES:
1. INCREASE SHEET METAL TO MATCH FOR LANIER FOUNDATION DETAILS.
2. PROVIDE CORNER BARS TO MATCH FOR LANIER FOUNDATION DETAILS.
FOOTING DETAIL

CAST-IN-PLACE STARS

SLAB SECTION

TYPICAL SLAB RECESS

RAMP RETAINING WALL DETAIL

SITE STAIRS

STEPPED FOOTING
PROVIDE C8X11.5 ON BOTH SIDES OF WALL AS TEMP. SHORING. REMOVE ONLY AFTER INSTALLATION OF HDR AND POSTS. BELOW IS COMPLETE.

(4) 1/2" DIA THRU BOLTS

1/2" DIA THRU BOLTS @ 24" OC. STAGGERED.

EXISTING WALL

NEW HSS4X4X3/16 POSTS

NEW W18X46 HDR, PROVIDE 3/8" THK WEB STIFFENERS ON BOTH FACES WHERE BEAM IS BEARING ON TOP OF POST.

CHIP OFF WALL AS NEEDED AFTER INSTALLATION OF TEMP HEADER FOR BASE PLT INSTALLATION.

EXISTING BRICK WALL 1/2" THICK PLT W18X46 HDR BEARING PLATE, SEE SECTION CL

EXISTING STR

1/2" THK BASE PLT

* TO ELEV

11'-4" ABOVE FFE EXISTING FFE.

SEE ARCH OPENING - SEE ARCH FOR SIZE

3' - 0" 3' - 0" 3' - 0" 3' - 0" 3' - 0"

EXTEND VERT REBAR THRU FULL HT OF WALL.

ADDITIONAL VERT AND HORZ REBARS AT OPENINGS - (4) - #5 EF FOR 8' - 4" WIDE OPENING - (3) - #5 EF FOR 5' - 4" WIDE OPENING - (2) - #5 EF FOR 3' - 4" WIDE OPENING.

ADDITIONAL REINF AROUND OPENINGS IN ICF WALL

SECTION A-A

SECTION

FRAMING AROUND NEW OPENING IN EXISTING STR

FRAMING DETAILS
1. PROVIDE CORNER BARS IN ICF WALL W/ 10" CONC. DECK, SEE PLAN.

2. THE ROOF DECK AROUND OPENINGS ON THE ROOF DECK, SEE PLAN.

3. PRODUCE L2 1/2x2 1/2x1/4 KICKER WELDED TO TOP CHORD OF ADJACENT JOIST AT 8" OC. AND 3" FROM END OF EACH PLATE (3 SETS MIN. PER SIDE) ACROSS DUCT PENETRATION. GC TO T.O.W ELEV.

4. PROVIDE DOWEL 1/2" DIA. @ DUCT OPENING IN SAFE ROOM-ROOF SECTION.

5. WALL SECTION AT ROOF.

6. GRATED STEEL @ DUCT OPENING IN SAFE ROOM-ROOF SECTION.

NOTE 1:

- PLATE WIDTH TO BE 1" LESS THAN FLANGE WIDTH.
- CONTRACTORS OPTION TO BUTT WELD ONE SIDE.
- PRODUCE L2 1/2x2 1/2x1/4 ALL BENT PLATE (3 SETS MIN. PER SIDE) AT 8" OC. AND 3" FROM END OF EACH PLATE.

NOTE 2:

- USE ANGLES TO SUPPORT THE SHEET METAL."
1 WATER HEATER DIAGRAM
LIGHT FIXTURE SCHEDULE

<table>
<thead>
<tr>
<th>FIXTURE/TYPE</th>
<th>MANUFACTURER</th>
<th>MODEL NUMBER</th>
<th>HOUGH</th>
<th>MAP TYPE</th>
<th>BRACKET</th>
<th>NOTATION</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>1005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GENERAL NOTES AND SCHEDULES

- E001

FILE: TPS Lanier Elementary Library Addition

TULSA PUBLIC SCHOOLS

IMPROVEMENTS TO LANIER ELEMENTARY

1227 S HARVARD AVE
TULSA, OK 74112
OCCUPANCY/VACANCY AND DIMMER DEVICE SCHEDULE

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Device</th>
<th>Location</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Philtec</td>
<td>Wall Switch</td>
<td>Library</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3-Way Switch</td>
<td>Library</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dimmer</td>
<td>Library</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Daylight Sensor</td>
<td>Library</td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- L: Occupancy
- D: Vacancy
- T: Timer
- S: Security
- C: Control
- I: Intermittent

Notes:
- All devices shall be arranged as shown in the plan views and schedules of the electrical plans.
- Each device shall be labeled with the manufacturer's name and model number.
- All devices shall be installed in accordance with the manufacturer's instructions.
- All wiring shall be done in accordance with the National Electrical Code (NEC) and local codes.
- All devices shall be tested and approved by the electrical inspector before being used.
- All devices shall be maintained in good working order at all times.

IMPROVEMENTS TO LANIER ELEMENTARY

1727 S HARVARD AVE, TULSA, OK 74112

TULSA PUBLIC SCHOOLS

ELECTRICAL LEGEND AND SCHEDULE

File: TPS_Lanier Elementary Library Addition

Drawn: 6/22/2018 11:43:03 AM, Dawn S.
1. TYPICAL CLASSROOM DEVICE INSTALLATION ELEVATIONS

2. HVAC RACEWAYS AND CONTROL WIRING DIAGRAM

3. STRUCTURED CABLE ROUTING/SUPPORTS

4. TYPICAL CLASSROOM DATA DROPS
1. CENTRAL BATTERY INVERTER SYSTEM DIAGRAM

2. FEMA SHUTTER CONTROLS

3. FEMA DOOR CONTROLS

4. CENTRAL BATTERY INVERTER GROUNDING DETAIL
1. Penetration through FEMA rated walls detail

2. Typical secure entry device installation elevations
Improvements to Lanier Elementary

Electrical Panelboards

IMPROVEMENTS TO LANIER ELEMENTARY
1727 S HARVARD AVE
TULSA, OK 74112

TLA

DMS, DSP, GMB
GDG, TEM

ELECTRICAL PANELBOARDS

file: TPS Lanier Elementary Library Addition

TULSA PUBLIC SCHOOLS

E401

NEW SWITCHBOARD ‘MDB’

CENTRAL BATTERY INVERTER

NEW PANELBOARD ‘MLD’

NEW PANELBOARD ‘LFP’

IMPROVEMENTS TO LANIER ELEMENTARY
1727 S HARVARD AVE
TULSA, OK 74112

TLA

DMS, DSP, GMB
GDG, TEM

ELECTRICAL PANELBOARDS

file: TPS Lanier Elementary Library Addition

TULSA PUBLIC SCHOOLS

E401